首页> 外文OA文献 >Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al–Cu–Mg alloy
【2h】

Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al–Cu–Mg alloy

机译:超细晶粒al-Cu-mg合金的组织演变,强化和热稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To gain insight into the origin of the ultra-high strength of ultrafine-grained (UFG) alloys, the solute clustering, precipitation phenomena, and microstructural evolutions were studied in an UFG Al-4.63Cu-1.51 Mg (wt.%) alloy (AA2024) processed by high-pressure torsion (HPT). The thermal analysis was performed using differential scanning calorimetry. The microstructures, internal microstrains and hardness following heating at a constant rate were characterised at room temperature using X-ray diffraction (XRD), transmission electron microscopy (TEM) and atom probe tomography (APT). The microhardness of the HPT processed sample initially increases following heating to 140 °C, and then remains unchanged on further heating to 210 °C. As the temperature increases up to 210 °C, the crystallite size calculated from XRD line broadening remains about 60–70 nm, while the dislocation densities remain in excess of 2 × 10^14 m^2. A multimechanistic model is established to describe the strengthening due to grain refinement, dislocation accumulation, solid solution, precipitation, solute clusters and their segregation. The analysis reveals that solute clusters and lattice defects are key factors in HPT-induced strengthening of alloys, and illustrates the interactions between alloying elements, dislocations and grain boundaries enhance strength and stabilize ultrafine microstructures. Furthermore, for an HPT sample heated beyond 210 °C, the formation of nano-precipitates also contributes to hardness increment. The multimechanistic model for hardness contribution indicates the short-range order strengthening due to cluster-defect complexes is the dominant mechanism, which accounts for more than 40% of overall hardness.
机译:为了深入了解超细晶粒(UFG)合金的超高强度起源,我们研究了UFG Al-4.63Cu-1.51 Mg(wt。%)合金中的溶质团簇,析出现象和微结构演变( AA2024)经过高压扭力(HPT)处理。使用差示扫描量热法进行热分析。在室温下,使用X射线衍射(XRD),透射电子显微镜(TEM)和原子探针层析成像(APT)对以恒定速率加热后的微观结构,内部微应变和硬度进行了表征。加热到140°C后,经过HPT处理的样品的显微硬度首先增加,然后在进一步加热到210°C时保持不变。当温度升高到210°C时,根据XRD线展宽计算出的微晶尺寸保持在60-70 nm左右,而位错密度保持超过2×10 ^ 14 m ^ 2。建立了多机理模型来描述由于晶粒细化,位错积累,固溶,沉淀,溶质团簇及其偏析而引起的强化。分析表明,溶质团簇和晶格缺陷是HPT诱导合金强化的关键因素,并说明了合金元素,位错和晶界之间的相互作用增强了强度并稳定了超细微结构。此外,对于加热到超过210°C的HPT样品,纳米沉淀的形成也有助于硬度增加。硬度贡献的多机理模型表明,团簇缺陷复合物引起的短程有序强化是主要机理,占总硬度的40%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号